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THE GEOMERY OF COHESIVE MAGNET-cOIL WINDING

Sumary - Duin the winding of a magnet-coil, the wire is pulled tightly

across the surface of the iner part that has already been wound. If the

;w.ire is not a geodesic in the surface, it will tend to slip lateraly. Classical.

dierential geometry is applied to the problem of widing the coil so as to

minze this tendency. subject to the constraint that a prescribed mag-

netic field be produced.

NOTATION

D subset of euclidean space

x point (x1.xz.xs) in D

r cure inD

s arc-length parameterization of r

Tex) tanent to r at x

N(x) pricipal norma to r at x

B(x) binorma to r at x

;(x) torsion of r at x

K curature of r

6(x) Darboli vector ot r at x

J(x) current density (vector) at x

L layerin fu~tion (scalar) on D
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optimal layering function on D

windabULty of a current distribution'

windabilty in a given laye::ing

equivalence relation on D

quotient manfold of D by R

quotient of L by R

quotient mappin from D to D I R

adjoint (of a linear tranformation)

real-vaued functions of x

liear dierential form on D I R

optimal linear diferential form on DI R

liear dierential form on D

local coordites in D I R

real-valued functions of Ui and Uz

anle

anle
iner radius of anulus

outer radius of annulus

height of anulus

constant

strip of geodesics contai'r

parameterization of strips paralel to S,..o

strips paralel to S,..o

ha-width of strip S,..o

liear space of current distributions

liear space of manetic fields

length of vector v
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INTODUCTION

The oldest branch of differential geometry is its theory of cures and sur

faces in euclidean space. It deals with concrete objects immediately accessible

to our naive spatial intuition. It is a beautiul theory to contemplate. but it was

also meant by its creators to be applied to real problems. The purpose of this

paper is to apply it to the mechancs of magnet-coil wind....

A cure in a surface is a geodesi if and only if it connects any two of its

points (not too far apart) by an arc that is shorter than any other arc in the sur-

face connecting those two points. If the surface is a plane. then its geodesics are

straiht lines. If the surface is a sphere. the geodesics are great circles. In gen-

eral (Brand (1)). '1f a weightless flexible cord is stretched over a smooth surface

between two of its points, its tension is constant and the lie of contact is a gee-

de sic" . If one tries to wid a "weightless flexible cord" along a cure that is not

geodesic, the cord will tend to slip to become a geodesic. In the process. it may

slp entirely off of the supporti surface.

Ths obvious fact wi be enlarged into a mathematical model of a magnet

coil that. though hihly idealzed. does predict the lateral forces on the wie dur

in coil fabrication that arse from these purely geòmetric considerations. A

coil is wound in layers with the wire in each layer puled tightly agait the layer

beneath it. A layer is idealzed as a smooth surface and a wie as a curve in the

suace. Then the extent tht it devites from a geodesic, and the associated

tendency towards lateral slippage. can be computed by classical formulae. In

ths idealization the wie ha no thickness so the model does not include the
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support it gets from the one of its two neighbors that has alrea::y bee" \\.o~n¿ In

the layer. However. layers are usually wound alternately from one ~i¿e to t.he

other so the support on one side that may have been crucial in the prevention of

slippage in one layer will be absent in the next. and the lateral forces predicted

by the theory should stil be taken into account. In any case, the slippage ten-

dency of the layer as a whole is modeled.

Not modeled at all are the forces that the magnetic field "fill produce later

when the coil is energized. There is no field to contend with whie the coil is

bein wound.

A solenoid can be modeled by helices wrapped on concentric cylindrical

surfaces. They are geodesics so the kinds of forces we are concerned with are

perpendicular to the surfaces and there is no slippage problem. On the other

had there are important coil shapes. for example saddle coils used in magne-

tohydrodynamic power generation (dipole) and accelerator beam steerir1.g (qua-

drupole), where the slippage problem can be so serious as to cause disassembly

of the coil durin fabrication. The precipitatin circumstance of this paper was

the threat of just such an occurrence, caled to my attention by RP.Smith. at

the Superconducting Magnet Group in Argonne Nationa Laboratory.

A measure of the problem is the size of the coeffcient of friction needed to

prevent lateral slippage. The coefficient is the tanent of the "anle of friction. Of

The complement of ths anle must be less tha the anle between the surface

and the osculatin plane to the cure at that point. '(If as thee non-collear

points on a smooth cure approach a lit point the plane they determie

approaches a unque liti plane. that plane is caled the osculating plane to

the cure at the lit point. The cure is a geodesic in a smooth surface if and

only 11 the osculati plane, at every point on the cure where it exists. is per-

pendicular to the surace at tht point. The force exerted by the wie on the
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surface is in the direction of the pnncipal normal to the cu~ve. a veclor in the

osculating plane thatis"'perpendicLÙar to the curve. Ths can be seen from a

parallelogram of forces determined by the three points as they approach their

lit.)
So far we have assumed that the layerin of the coil was fied. But a layer-

in is not determned by the current distribution the coil is designed to carry.

For example, early in the winding of a solenoid one end of the coil could be

disproportionally built up so that the layers were concentric cones. Circles are

not geodesic on right circular cones so the wies would tend to slip down towards

their vertices.

An optima layerin of a current distribution wil be defied as one for

which the needed coeffcient of friction is minial. The VJnda.büity of a current

distribution wil be defied as the reciprocal of the smallest coeffcient of fric-

tion that would keep the wire from slipping lateraly in an optimal layering.

Thus the WIndabilty of a solenoidal current distribution is infte because in an

optimal layering (concentric cylinders) no frictional forces are needed (ideaIly).

There are other distributions for which no such layering can be found. If

the solenoid is skewed by an affne transformation. there is no way the wie can

be wound as a geodesic. The widabilty for skewed solenoids wi be computed

and shown to be fite. Ths arti.cial example is used to ilustrate the theory

because of its mathematical simplicity. Saddle coils have an inconveniently low

widabilty but the computation is not as simple.

A procedure is described for fiding optil layerins.

Fiy, it is shown that any curent distribution can be approxiated arbi-

trarily closely by another whose widabilty is as large as desired. The price

paid for the high windabilty of the approximatin ditribution may, however, be

an ineasibly complicated supportin structure.
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All the mathematicst-ht we wil need was already familiar to the nmeteenth

century geometers. It is almost entirely contained in chapters II and 'Vin of

Brand (1), which is a very good introduction to undergraduate vector and tensor

anysis. The remainder consists of a feW' .results from the more-specialized

Weatherburn (2).

The current distribution is defied by a real vector field J(x), nonzero for

al x = (x¡.x:;.xs) in some bounded domain D. an open subset of euclidean space.

The wie at x is required only to be parallel to J(x). so we can repláce J by the

normalized vector field

T(x) = J(x)/ ¡J(x)¡.

A layerng of T (and J) is defied by a real-valued function L(x) such that

r¡ L is nonzero and perpendicular to T(x) for all x in D. The layers will be the

level-surfaces L = c of L.

L and T are assumed to have continuous fist derivatives but. like the

nineteenth century geometers. we wil not explicity state al continuity condi-

lions. Also, we will use their pbrase "in general" to avoid analysis of singular

situations; and we wi use integrabilty only as a local concept.

Th wies can be represented by solutions of the diferential equation

dr(s)
ds T(r(s)). (1)

L is an integral of the equation. L (r (s)) is constant for al s (and a fied solu-

tiOl1 cure r). s measures arc length along T, T(x) is the tit tanent vector to

., at rex).

In the solenoidal example above. with the helical wiin approxiated by

cIrles (degenerate helices), D can be taken as the anÙlus
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with

T(x) = (-x:;,xl,O) I vx¥+xl.

The solutions of (1) wil be circles with centers on the axis of the cylinder,

so the function

L(x) = vxr+xl

wi be a layering of T. The stress exerted on the underlyi layer by the

corresponding wire will be directed radially inwards.

For the tanent field T correspondi to an arbitrar current distribution.

tht force will be diected along the principal normal N to the cure, defied by

N(r(s)) = dT(r(s)) I IC(X)ds

where Ie is a non-sinular scalar caled the curvatre of r at res). By the

defition of integrabilty of a vector field, an L wi exist everywhere perpendic-

mar to this force if and only i1 N is integrable. By the classical theorem, ths is

true only if N'cu:N = O. ( The converse would involve non-local considerations

tht have been explicitly excluded from th paper.)

The component of curlN in the N-diection at x is

((B(x)'V)N(x))' T(x) - ((T(x)'V)N(x))'B(x). (2)
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But lV(x)' T(x) = 0 for all x in IJ r so

','..

V(N(x)'T(x)) == (VN(x))'T(x)+N(x)'(\7T(x)) == 0

and the fist term of (2) is equal to

-((B(x ),\7) T(x ))'N(x).

By the second Frenet formula, the second term in (2) is equal to

-(-IC(X)T(X)+í(X)B(x))'B(x) == -í(x)B(x)'B(x) = -í(X)

where r(x) is the torsion at x == T (s) of the cure r through x.

Therefore

((B(x)'\7T(x))'N(x) + ¡(x) == 0 . (3)

is equivalent to N'curlN == O. However (3) is easier to use in computing the wi

dabilty of T. (The expression on the left of (3) has an intuitive geometrical

mean. Associated with every cure is a strip called the rectifyi strip. It

contai the cure and also contai B(x) in its taent space. It is contained

in the envelope of the s-parameterized famy of planes, the rectifyin planes,

each of which contai res) and, as tanents, B(x) and T(x). Thi strip is deter-

mied by r alone, independently of the famy of cures in which it is imbedded.

Bu that famy also determes a strip conta. r. made up of those cures in

th famy that are taent to the recilyi strip "along" B(r (s)) "at" r (s). The

expression l. (3) measures the rate of deviation of that strip from the rectifyi

strp at that point. When it is zero the two strips cOÍ.cide. Then N is integrable
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Ô-Lid its integral surfaces can beconstructed bypu~tingtogether therecttf)"iDb

strips.) ',"'
We fist defie a quantity w(T.L) that measures the "windabilty of Tin a

given layering L:

w(T.L) = maX;iin.D cot la.ngle(N(x),VL(x))I.

Then defie the 1.inda.bilityW by

W(T) = miL 1J(T.L). (4)

The tangent of a.ngle(N(x),í1L(x)) is the smallest coefficient of friction

between layers that would keep the wire at x from slipping laterally. Therefore.

W( T) is the reciprocal of the smallest coeffcient of friction needed to keep the

wie from slipping in an optimal layering -- optLrnal in the sense that there exists

no layerin of T in which an even smaller coeffcient of friction would hold the

coil together durin windin.

L defies an optimal layerin if the maximum of the angle between its gra-

dient and N is as small as possible. To construct such an L. we fist construct

each layer by putting together strips along each cure r (solution of (1)) in the

layer. Each strp is oriented so that the maxum along r of the anle between

its normal and the principal normal to r is mial.

To cary out this construction, defie two points in D to be equivalent with

respect to the relation R if and only if they are both on the same curve r. Defie

.vi R to be the two-ensional ma0ld whose "points" are the cures r. In the

termiology of (2). section 103, DI R is a curnear congruence. In modern ter-

miology it is the quotient manfold of D by R. (There may be no cross-section

of the famy of cures tht would alow us to identifj points of D I R with points



- 10 -

Lri a two-r.imensional submarjfold of D.) A_t'y layering function L 1S const.2.~l en.

each r (in the termüiology of (2). section :O~, it is a "surface of the

congruence"). so it i:; compatible with the relation R anddeenes a føction L/ R

on D I R. There is a one-to-one correspondence between layers (surfaces) in D

and cures in D I R. The set of all cures in D I R tanent at a given point r

(layers in D tangent along a given Cure r) determines a directi.on at r (strip

along r). We wa.'1t to vary that diection unti the correspondin strip is optimal.

A convenient way to formalize the argument is provided by the notation of

differential forms. Let 9 be a liear diferential form on D I R. (In a subset of

DI R where Ui and Uz can serve as coordinates, there win exist functions

! i(ui,uz) and ! 2(U1.UZ) such that the form can be 'written
g = 11(Ui,U2)dui+! Z(U1.U2)du2') Let Q be the quotient mappin from D.to

DI R. Theng defies a line.ar form (dQ) v g on D that can be 'written G(x)'dx for

some vector G(x) perpendicular to that curve r in the congruence such that

x = rex). (No metric has been defied on DIR. so there is no invariant connec-

tion between forms g and vectors (J 11 z).) Because N(x) and B(x) span the

space of vectors perpendicular to r at r (s),

G(x) = ei(x)N(x) + e2(x)B(x)

for some scalar functions ei' Defie eg(x) ~ a.le(G(x),N(x)), and then defie

go as the form g such that at each r in DI R.

max ieg (r(s)) I

is mial. But all liear d.erential form on two-diensiona manolds are

1ntegrable (localy). In general they are multiples., by an integrating factor. of
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the differential of a function Ä-iq every fi.mction on D/ R is of the for-o L/ R fcc

some layering function I.,on D. Let Lo be that function on D which corresponds

to g c. Then La determines an optimal layering of T:

WeT) :: w(T,La).

To ilustrate this procedure, We apply it to the skewed solenoid. It is

obtaied from the solenoid by the afine tranformation

(x l' X2. xs) .. (x 1 +cxs, xZ. xs)

Each circle r is transformed into another circle in the same plane, and

N(x) :: (cxs-X l' -Xz. 0) I v(cxs-x 1)2 + xi

is stil the unt vector pointing towards the center of that (new) circle.

T(x) :: (-xz. X1-cxS. 0) I V(cxS-x¡)2 + xl

is obtaed by rotatin it through a right anle. N is integrable if and only if (3)

is satisfied. But i:: a for any family of circles; and B(x):: (0.0,1). and in apply-

in the product rue for dierentiation to T the term. contai:i the derivative

ot the denomitor with respect to B(x) :: dl dxs can be ignored because the

numerator is perpendicular to N (x). Therefore, (3) becomes

f~3 (-xz, xi-cx:i, 0+ 

(CXS-x¡. -X2. 0) I ((CXS-x1)2 + xn == a
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and

','~ , (( )2 2)CX21 CX3-Xi + Xz = O.

Thus there is no way to wind a skewed (nonzero C) solenoid such that the wire is

a geodesic in each layer.

The best that can be done in thi case is a layeri Lo that minmizes the

maxium over D of angle (í/L,N). By the symetry of T, ,we need look only at

m~ angle ((gradL )(r(s )), N(r(s )))

for anyone solution r of (1). It can be taken as the circle in the x = 0 plane 'with

radius a and center at (0,0,0), parameterized such that r (O)=(a ,0,0).

In ths case there does exist a cross-section of the curviliear congruence

tht can be identifed with DI R, namely, the parallelogram in the x2 = 0 plane

defied by O::xs::h and a+cx::::Xi::b+cx:: (the intersection of D with the

positive quadrant in the x2 = 0 plane). Let u1 = xi and u2 = x::. Defie the value

of the liear dierential form g at (0.,0) by 1 i(a,O) = cos ex and 12(0.,0) = siD a..

Then eg (r (s)) could be obtaied by integrating along r the expression we have

obtaed for N'cv:lN; but it is a monotonic function of s between 0 and ITa, so

its absolute value attains its maum at one of these two points. Tht absolute

vaue is minimal when a. = -a:ctan c, so

WeT) = w(T,L) = lIe

and Lo can be taken as the tranform of vXf+xl. The layers tht were right

circular cylinders are tranformed into cyliders with ellptical cross-sections.

OPTMIZATION OF TH WINDABII.TY

Th coetñcient of frction may be too low to hold. the coil together dur



- 13-

widing even in an optimal layering. One would like to be able to increase the

wid ab ilty , necessarily.,Qy altering the distribution; without unduly distortmg

the magnetic field in the region of interest.

It is clear that a single isolated wire can always be supported in place: a

cure r can always be imbedded in a narrow strip perpendicular at each r (s) to

N(r (s )). Then r is a geodesic in tht surface. So the widabilty of an isolated

curent fiament is always in4.te, no matter how convoluted it may be. But this

does not take care of current distributions defied on sets with non-empty inte-

rior. For them we want to put the strips together to form layers. As a fist step

in that diection, we would like the strip to support a layer of parallel wires, Le.,

a one-parameter family of parallel geodesics. Fortuntely, a great deal is known

about such surfaces. By the theorem on page 25, volume II of (2).

"If a family of curves are both geodesics and parallels on a surface. the sur-

face is developable."

A surface is developrile if and only if it is the envelope of a one-parameter

famly of planes. Then it wi have the useful properties that it is swept out by its

only famly of ruls and that it can be Unolled out fiat onto a plane without

distortion. Its intric geometry is that of a plane. Al developable surfaces are

(extriically) either planes, cyliders, cones or else they are the surface swept

out by the tangents to some twisted curve in space, its edge of regression.

Associated with every cure are several developables other than its tangent

surace. One c:f them is its "rectif developable"; contai the rectiyi.g

strp described after equation (3). It is the envelope, as s vares, of the rectify-

in plane, orthogona to N(r(s)) at res). r is geodesic in its rectif developa-

ble; hence it can be viewed as a straiht lie in a plane, the plane with which the

recti developable is isometric, and can be imbedded in a one-parameter

famy of straiht lies in tht plan, Le., of 'geodesics in its rectifyi
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developable. L8t Sr.C be triis strip ofgeodesIcs. Of\~-idth 2t;v,-ith T the cC!1ler-Iine.

In the next layerw'Q.und lengthvvise on top of this strip, the ,\ires wil natur-

ally tend to align themselves with the wires below, even though this may cause

them to deviate sightly from geodesicity in their own layer. For a mathematical

model of such a multi-layered strip, imbed Sr,O in a one-parameter family S,.).,

-e-( À -(e of parallel surfaces of width 2e by the following construction; Using Sr.O

as the "director surface" ((2), page 183), construct the two-parameter famly of

straight lines Crectilinear congruence) normal to Sr.O (a "normal system" in the

terminology of (1), section 141). Defie L (x) = À if and only if the signed dis-

tance of x from Sr.O equals À. Thi distance 'Nil necessarily be measured alo:i

the straight line of the congruence through x. It is assumed that c: is small

enough to exclude sinular points in the congruence. The level surfaces L = À

defie the one-parameter family of parallel surfaces. Those lines in the

congruence that intersect a given geodesic in Sr.O. form a one-parameter sub-

famy that intersects S,..). in a cure, thus setting up a one-to-one correspon-

dence between the family of geodesics in S,..o and a family of cures in Sr).'

Defie the domai Dr as the unon of the sets Sr.). for -e -( À -( e, and defie

T,., N,., and B,. in D,. as the tanent, normal, and binormal fields of the two-

parameter famly of cures. Let TO be one of the geodesics in the defi famiy

of S,..o. Then the corresponding curve in S,..: is given by

r~.(s) = roes) + Ì\,.CroCs))

because N,.Cr (s)) is perpendicular to Sr.o (by the geodesicity of ro ); and

drÀ(s) _ .r. ( ()) + '\ dNr(ro(s ))ds -,. TO S Ads'
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But

','.....:

dN,.(ro(s ))
d. -ico(s)T,.(ro(s)) + To(s)B,.(ro(s))

by the second Frenet formula. Therefore

drÌ\(s)
d. - (l-MQ(s))T,.(ro(s)) + Ì\To(s)B,.(ro(s)).

As the presence of the second term on the right had side of this formula shows,

rJ\ need not be a geodesic in S"',À' That family need not even consist of parallel

cures, though ths latter is a higher order effect.

By normalizin êlnd diterentiatin this expression for dr,\(s)1 ds, the princi-

pal normal N,.(r,\(s)) at r,,(s) can be found. and then the angle between it and

N,.(ro(s)) which is also normal to S",À at r,\(s). Then w (T,.,L) and W( T,.) can be

found. The angle is a continuous fuction of Ì\ that goes to zero'with e,so by a

compactness argument it can be shmvn that

li£: .. Cl W( T,.) = co. (5)

The construction of Sr,À is greatly faciltated by the developabilty of S,..o. Co or-

ditize the strip Sr.O by developin it out fiat in the plane as a rectanle and

defi the s-ax paralel to the long diension and at a distance E: from either

long edge. Then take for the second set of coordiate lies the one-parameter

famy of straight lies crossin the s-axs at an anle whose tangent is

~s)1 'Ts). where Ic(S) and r(s) are the curture and torsion of the given cure

r at r(s). Th is the anle at which the Darboux ve~tor intersects r. Defie the
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coordinates of a point in the flattened strip as sand s 1. where s 1 is the si;::cd

distance of the point from the s -axis as measured in the direction

arctan (LC(S)1 í(S)). If.: is small enough. the coordinateswìl be unque. I\ow

defie an isometry of the flattened strip into D,. by mapping the point with coor-

diates (S,Sl) in the strip into the point T(S) + S16(S)/ 16(s)1 in Dr, where 6(s)

is the Darboux vector. Ths is the mappin that identifes the straight lines

parallel to the s-axs in the flattened strip with the defing family of geodesics

in Sr.O' The Darboli vector at s lies along the rulin of Sr.O at s.

The mappin can be extended, though it need no longer be an isometry off

of S,..o, to a mappin of a rectangular paralelepiped with square cross-section,

2.: on each side, and with the fit S ,s i-strip as its midplane, by mapping the

point (s ,s i,À) in the rectanular parallelepiped into the point
res) + s16(s)/lo(s)I + ÀN(s) in D. Then the straight lines paralel to the s-axs

in the rectanular parallelepiped correspond to the bundle of v.ires in D,., The

rus in S,..À consist of those points closest to the rulins in S,..o. because the

enveloping planes of paralel developable surfaces correspond and are constant

along a rul.

In many schemes for the numerical computation of magnetic fields, the

continuous current distribution J is. in effect. approxiated by a fite number

of one-diensional. discrete curent elements. For example. if the relationship

between current distribution and magnetic field is liear and implemented by an

integral transform, the Rieman sum approxiatin to the integral can be

taen over such current elements, suitably weighted.

Although it mayor may not be numericaly convenient, the curent ele-

ments can be joined together to form a 11te number of current fiaments along

the cures T1,r2' . . . ,TN, approxiatin J to any desired degree of accuracy in

the sense of numerical convergence of the magnetic tìeld calculation.
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The current fiament along the curve ri can be approximated to o.n 0.:-bi-

trary degree of accuracy as far as the magnetic field' in the region of interest is
- . ','--'

concerned (necessarily in a region bounded awùY from that of the coil) by a con-

Unuous current distribution Ji in some domain D"i' union of the sets Sri'). over

-t c: À c: e, as described above. Further, if all the G are small enough, W(Ji) can

be made larger than any preassigned constant by (5), and hence so can

W(LiJi) = min- W(Ji). By making these remarks mathematically rigorous, one

can prove the main theorem of this paper:

Ever current distribution can be appoximated arbitrariy closely by a

current distriution of arbitrariy high windabiLity.

To carry out such a proof one could defie linear spaces C of current distri-

butions and JJ of magnetic fields. and a weak topology on JJ induced by test

functions with support in the region where the magnetic field is of interest.

Defie a topology on C as the weakest in which the transformation from C to JJ

is continuous, and show that the set of all J in C such that W(J) / c is dense in

C for any constant c. Modern functional analysis provides us with several kinds

of locally convex linear topological spaces for which such a proof could be dev-

ised, but it would not convey any useful insights. The heart of the proof is con-

tained in the intuitive argument given above.

In fact. the construction of the approximatin distributions LiJi is essen-

tially just that already used on the shop fioor of magnet-widig facilties. Even

dicult coil conñgurations are put together from a relatively smal number of

doma D,.,. each of which is wound in layers of paralel wies buit up until devi-

ation from geodesicity endaners its cohesiveness. The cross-sections of the Ai

are usuay trapezoidal or wedge-shaped (rather th square) so as to fit roughly

together.
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The real purpose of this paper is to argue that the whole design a.îd

manufacture process for magnetic coils, from the magnetic field calculation to

the runng of the numerically controlled millng machine that shapes the sup-

ports, can be aided by a unfied system of computer programs. Both ends of this

process have already been computerized. Programs are available and heavily

relied upon for field calculations; and the ming machine is, of course, con-

trolled by a program. Classical differential geometry can be used to help bridge

part of the gap between these two ends by putting a mathematical foundation

under the art of magnet VI'Índin. The present cut-and-try procedure of experi-

menting with epo).'y or aluminum models before committing to the more expen-

sive steel supports, can be replaced by experimentation with mathematical

models. EÀ"Perience and intuition canot be replaced, but software is a cheaper

and more flexible material for them to work on than hard'ware.
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